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Department of Physics, Indian Institute of Technology, Kanpur 208016, India 

Received 7 August 1989 

Abstract. Diffusion in a general bistable potential governed by the Fokker-Planck equation 
is studied for large 1. A simple variational calculation yields a lower bound for the Kramer's 
time. The method (using a supersymmetric pair of Hamiltonians) applies immediately to 
diffusion in a potential with a large number of minima and to bistable potentials in higher 
dimension characterised by a most probable escape path. 

Diffusion in a bistable has often been studied since it is the prototype of problems 
which involve an approach to equilibrium. In its simplest one-dimensional form one 
considers a potential V ( x )  with two minima at x = a and x = b, separated by a maximum 
at x = 0 (figure 1). A particle starts out at the unstable point x = 0 and feels a small 
random force in addition to the force derived from the potential. I t  is conventional 
to treat the high-viscosity limit, where the equation of motion becomes 

d U  
dx 

x = --+f(t) 

f(t) being the random noise, specified by the correlation 

(f( r ) f (  r ' ) )  = 2 ~ 8 (  r - r ' ) .  

\ I"'*' 

I 
Figure 1. The general bistable potential in one dimension. The function & ( x )  in the trial 
wavefunction follows U ( x )  close to the two minima and then joins smoothly to the linearly 
decreasing functions as shown by the broken lines. 
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The approach to equilibrium is best described in terms of the Fokker-Planck 
equation for the probability distribution p(x, t ) ,  

The equilibrium solution is 

To find the time-dependent solution of ( 3 ) ,  one makes the substitution 

P(X, 1) = exp(- U/2.5)4(x, t )  

and obtains for 4(x,  t )  the Schrodinger-like equation 

-&-= a4 -& 2 @ +  V ( X ) +  
a t  ax2 

where 

V(x) = a U‘(X)’ - 5EU”X) (7) 
and finds 

44x9 t )  =c afl exp(-Aflt)dfl(x) 
fl 

where 4,,(x) are the complete set of eigenstates of the Hamiltonian H =  
-E2a2/dX2+ V(x), with 

H4fl(x) = L4fl(x). (8) 
The Hamiltonian of (6) is positive semi-definite with lowest eigenvalue zero with 

the wavefunction 

&(x) = A exp(- U ( X ) / ~ E ) .  

Thus, 

P(X, t )  = A exp(-U(x)/&)+ a, exp(-~, t )4 , (x)  exp(-U(x)/2&). (9) 
cc 

f l = l  

Three timescales can now be identified in the problem: 
( i )  the initial period when the probability distribution of t = 0 (sharp peak at x = 0) 

begins to spread out due to diffusion; 
(ii) the intermediate time regime of Suzuki [ 11, where the broadening central peak 

begins to split into two side peaks corresponding to the minima of U(x) at x = a and 
x = b ;  

(iii) the final time regime of Kramers [2], where the system is close to equilibrium 
but can make occasional large fluctuations due to the noise. 

Here we are interested in the final regime. The time to attain true equilibrium is 
now controlled by the lowest excited state of (8), namely the eigenvalue A An analytic 
technique that yields A ,  is the WKB method (note that A I  is exponentially close to the 
ground-state energy, zero, and differs from it only because of the tunnelling in the 
three-well problem posed by the potential of (7)) and a formidable calculation by 
Caroli et a1 [3] yields the answer 

A I  = CE[(IU:IU:) ’ /~  exp(-A, /&)+( lU~IU~)”2exp(-A, /~) ]  (10) 
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where C is a constant (equal to (27r)-’ in the W K B  calculation of Caroli et a1 and 

A a , h  = UO- Ua,h (11) 
with U, denoting the value of U(x) at x = n. The problem of finding A I  by calculating 
the splitting of the lowest state of H due to tunnelling can be converted to the 
determination of the ground state of the supersymmetric partner of H. A variational 
calculation will now yield an upper limit to the value of A I .  Here, we show that for 
an arbitrary U(x), one can obtain A I  from a variational calculation and always cast 
the answer in the form of (IO). Our best variational wavefunction yields C =  
ie3/2(67r)-’/2-0.17. One can now extend the calculation to a potential U(x) which 
has N minima and establish that the eigenvalue A I  vanishes as N + CO, i.e. in the limit 
when U(x)  becomes periodic. Consequently, supersymmetry is broken when U(x) is 
periodic and the classical particle can diffuse, i.e. (x’) increases with time. Thus for 
the transition from localised to extended states in the classical problem supersymmetry 
is the symmetry that is broken in the equivalent quantum problem. We also treat the 
two-dimensional bistable potential and in the case that the minima are connected by 
a most probable escape path [ 5 ]  establish that the lowest eigenvalue A I  is given by 

A I  = C E [ ( I U ~ ~ ~ U ; ) ’ / ’ (  W,/ W0)I/’ exp(-A,/&) 

(I Ub)’”( wb/ WO)”’ eXp(-Ab/&)] (12) 
where the constant C is once again ie3/2(67r)-1/2. 

To establish (10) for the one-dimensional potential U(x)  (see figure l ) ,  we proceed 
as follows. 

As noted by Bernstein and Brown [4], A I  is obtained as the ground-state energy 
of the supergrammetric partner of the Hamiltonian of (6), where the potential V(x) 
is replaced by ?(x) = - fU’(x) ’+f~U”(x) .  Thus, one requires the ground-state energy 
of H = -E2d2/dx2+ c ( x ) .  This is to be obtained by a variational calculation. We 
observe that exp( U ( X ) / ~ E )  is an eigenstate of the above Hamiltonian with eigenvalue 
zero. However, this function is not normalisable. Hence we choose the trial function 
exp(+(x)/2e), where 

( i )  4 ( x )  = U ( x )  for b( 1 - ( Y h & ’ / ’ )  < x < (1 - a0&’/ ’ )  

(ii) r$(x) = U (  a - uE’/za,)  + U’(u - u ( Y , E 1 / 2 ) ( X  - a + U a a E 1 / 2 )  

for x > a ( l - a , ~ I I ~ )  

(iii) & ( X )  = U ( b  - b E I / 2 L y b ) +  U’(b - h ’ b E ’ ’ ’ ) ( X  - b+ b ( Y h E ’ / ’ )  

for X < b( 1 - a h e l / ’ ) .  

In the above, we have assumed that E is small and anticipated the distance scale to 
be O ( E ’ / ’ ) ,  so that a, the variational parameter, is going to be a number of O(1). Note 
that the matching occurs near the turning points in the classical region for the 
corresponding Schrodinger equation. We now need to evaluate the expectation value, 
A l ( a )  as 

The calculation involves the following steps. 

small x and this maximum value of 
normalisation integral is exp(( U, /&)  

( i )  Evaluating the normalisation integral, we note that 4 (x )  --. U ( 0 )  - f U ” ( 0 ) X Z  for 
the integral for E<< 1. Thus, the 
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( i i )  The kinetic energy and potential energy terms cancel completely when d ( x )  = 
U(x) .  Thus the integration in the numerator of equation (13) involves integrating 
from a(  1 - E ’ ’ * a , )  to 00 and from b( 1 - E 1 / * a h )  to -00. 

(iii) In the range of integration discussed in (i i)  about x = a and x = b, it is sufficient 
to approximate the potential U ( x )  by a quadratic expression for E<< 1. Terms like 
U( a - a~ ”*a,) and U’(a  - a& 1 / 2 a , )  need to be expanded to O( E )  to obtain the leading 
term, and it should be noted that V ’ ( a )  = U ’ ( b )  = 0. 

We thus obtain A,(a) .  Minimisation with respect to a 0 . h  leads to the conditions that 

a2a i  U’’( a )  = b*a; U”( b )  = 3 (14) 

thus establishing (10) with C = ie3/2(67r)-1/2. For the class of potentials treated by 
Bernstein and Brown [4] our result agrees exactly with theirs. 

We take up the two-dimensional problem with the U(x, y )  having the form shown 
in figure 2. Our assumption about U(x, y )  is going to be that made by Caroli et a1 
[5]-namely that there exists a most probable escape path (the instanton trajectory) 
which we take to be the x axis in this case and about this escape path U(x, y )  can be 
expanded as 

(15) 

where U ( x )  is the potential that we have discussed above. The Hamiltonian of (8) is 
now 

U(x, y )  = U ( x ) + i  W ( x ) y 2  

with 

The ground state of H is exp( - U(x, y ) / 2 ~ )  and the eigenvalue is zero. As before, 
we are interested in the first excited state. 

\ t U l X . Y l  i 

Figure 2. The general bistable potential in two dimensions. The most probable escape 
path is the x axis. 
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One notes immediately that the first excited state will involve changes (mainly) in 
the x direction, retaining the y dependence of the wavefunction as exp( - w(x)y2/2e) 
to a good approximation. This ‘stiffness’ in the y direction suggests a variant of the 
Born-Oppenheimer approximation where we solve the y-dependent part of the 
Hamiltonian, treating the x dependence as a parameter. The resulting eigenvalue will 
be a function of x and will act as an effective potential for the one-dimensional problem 
in x. Introducing (15) into (16), we find the y-dependent part of the Hamiltonian to be 

-E2a2/ay2+a(w2+ U ’ W I -  w t ) y 2  

whose lowest eigenvalue is clearly f ~ J w ’ +  U f w ’ -  EW”.  Noting that w is a slowly 
varying function, so that w’/  w and w“/ w are 1, we can expand the above expression 
and write down the Hamiltonian for the x direction problem as 

d2 U’’ E U’ w f  E 2  wtt 
g f = - & 2 - + - - - ( J ’ r + & - - -  

dx2 4 2 4 w  4w 

where, in writing the second line, we have not matched the higher-order term E’( w r /  w)’. 
We require the two lowest eigenvalues of the Hamiltonian of (17)  and, in addition, to 
obtain the first excited state we need the ground state of the supersymmetric partner 
of H, which is given by 

( d U’ w ’ ) (  d U’ w f )  g =  E-+-+-  - - E - + - + - .  
dx 2 4w dx 2 4 w  

We now take over the variational calculation for the one-dimensional case discussed 
above. The only difference to be noted is that the non-normalisable function which 
gives zero eigenvalue is now 

For E << 1, this term yields exp[iln( W(a)/  W(O))] for the range of integration from 
a ( l - a , ~ ” ~ )  to CO and a similar term for the range b ( l  to -CO, when one 
calculates the expectation value. We thus obtain (12). Generalisation to higher ( n )  
dimension is straightforward. There will be ( n  - 1) transverse directions characterised 
by ( n  - 1) functions Wi(x) and the factor W ( a ) /  W ( 0 )  will be replaced by 

Finally, we return to the one-dimensional problem and consider a potential U, (x )  
with N minima, with all the minima and intervening maxima of equal height. As 
N + 00, the potential passes over to the periodic potential which has been investigated 
before [6]. It is known that for the periodic potential, the behaviour is diffusive and 
in the long-time limit the mean-square displacement increases linearly from localised 
to diffusive behaviour. Proceeding exactly as for the one-dimensional case, we note 
that in (13), the evaluation of the numerator produces exactly the same answer as 
before, but the denominator now has N -1 ( = N  for N > >  1) terms (all maxima are 
equal) and hence the lowest eigenvalue A r N )  is obtained as A(,” = A , /  N, where A I  is 
given by (lo), the two terms of (10) standing for the two extreme minima of the above 
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potential. Clearly as N + 00, the first excited state eigenvalue tends to zero. The ground 
state becomes degenerate, resulting in the breaking of supersymmetry and transition 
from localised to diffusive behaviour for t + 00. 

References 

[ l ]  Suzuki M 1977 J.  Stat. Phys. 16 1 1  
[2] Kramers H A 1940 Physica 7 284 
[ 3 ]  Caroli B, Caroli C and Roulet B 1979 J.  Stat. Phys. 21 415 
[4] Bernstein M and Brown L S 1984 Phys. Rev. Lett. 52 1933 
[5] Caroli B, Caroli C, Roulet B and Gonyet J F 1980 J.  Stat. Phys. 22 515 
[6] Festa R and Galleani d’Agliano E 1978 Physica 90A 229 


